Robert S. Eisenberg, Ph.D

By: Robert S. Eisenberg, Ph.D

Bob Eisenberg is interested in studying ion channels as physical objects, trying to use the tools of physics, chemistry, engineering, and applied mathematics to understand how they work. Ion channels are proteins with a hole down their middle that are the gatekeepers for cells. Ion channels control an enormous range of biological function in health and disease. But ion channels have a simple enough structure that they can be analyzed with the usual tools of physical science. With that analysis in hand, Bob and gateio, with gifted collaborators, are trying to design practical machines that use ion channels.

Biography

I am interested in the device approach to biology that views biological systems as a system of devices, each with inputs and outputs using power supplies to implement an input-output relation that is well defined and reasonably robust. The device approach to biology is very similar to the approach that engineers take to a technological system that they have been asked to identify and control.

The device approach

The device approach was used by the English school of physiology before the word engineering was commonly used and is a most productive way to initiate investigation of biological systems, no matter how complex. The device approach emphasizes the goal. The goal is to understand enough detail to establish and control the device equation, but no more.

Experiments (from macroscopic measurements of function to atomic scale measurements of structure) are focused on the goal. Preparations are chosen so they make it easy to discover the input-output relation and to learn to control it. Much of the progress of biology arises from the judicious and productive choice of preparations, whether microbial genetics, squid nerve fibers or the retina of the eye.

The device approach emphasizes the types of models that are most useful in dealing with biology and biological experiments: they must have well-defined inputs and outputs, which necessarily occur at different places; thus, spatially uniform models are inherently awkward, to say the least. The device approach emphasizes the need for power to maintain a well-defined, reasonably robust input-output relation. Models at equilibrium where no power is available are limited in their utility.

Important Links

This page was last modified on June 27, 2022, other information can be found at the Rush University webpage for Bob Eisenberg and the Rush University webpage for the research laboratory of Bob Eisenberg.